Impulsive Memristive Cohen–Grossberg Neural Networks Modeled by Short Term Generalized Proportional Caputo Fractional Derivative and Synchronization Analysis

نویسندگان

چکیده

The synchronization problem for impulsive fractional-order Cohen–Grossberg neural networks with generalized proportional Caputo fractional derivatives changeable lower limit at any point of impulse is studied. We consider the cases when control input acting continuously as well it instantaneously times. defined global Mittag–Leffler a generalization exponential synchronization. obtained some sufficient conditions Our results are illustrated examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks

The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real  concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...

متن کامل

Fractional Hamilton formalism within Caputo ’ s derivative

In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...

متن کامل

Existence Theory for Impulsive Partial Hyperbolic Functional Differential Equations Involving the Caputo Fractional Derivative

In this paper we investigate the existence and uniqueness of solutions of a class of partial impulsive hyperbolic differential equations with fixed time impulses involving the Caputo fractional derivative. Our main tool is a fixed point theorem.

متن کامل

Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus

This paper establishes some closed formulas for RiemannLiouville impulsive fractional integral calculus and also for RiemannLiouville and Caputo impulsive fractional derivatives. Keywords—RimannLiouville fractional calculus, Caputo fractional derivative, Dirac delta, Distributional derivatives, Highorder distributional derivatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10132355